Exercices: Applications

Exercice 1:

Tracer la courbe représentative d'une fonction f définie de [0;1] dans [0;1] dans chacun des cas suivants : a) f est ni injective, ni surjective, b) f est injective mais non surjective, c) f est surjective mais non injective, d) f est bijective.

Exercice 2 : Montrer que la fonction $f: \mathbb{R} \setminus \{-3\} \to \mathbb{R} \setminus \{1\}$ définie par $f(x) = \frac{x-1}{x+3}$ est une bijection et déterminer sa bijection réciproque.

Exercice 3 : Les applications suivantes définies de D dans $\mathbb R$ sont-elles injectives? surjectives? bijective?

- 1. f définie par $f(x) = 6x 2, \forall x \in D = [2; 5]$;
- 2. g définie par $g(x) = 3x + 5, \forall x \in D = \mathbb{R}$
- 3. h définie par $h(x) = 2x + 1, \forall x < 0$ et $h(x) = 4x 2, \forall x \ge 0$
- 4. r définie par $r(x) = \frac{1}{x}, \forall x \in \mathbb{R}^*$ et r(0) = 0.

Exercice 4:

Les applications suivantes sont-elles injectives? surjectives? bijectives?

- 1. $f: \mathbb{N} \to \mathbb{N}$, définie par $f(n) = n + 1, \forall n \in \mathbb{N}$.
- 2. $f: \mathbb{R}^3 \to \mathbb{R}^2$, définie par $f(x,y,z) = (x+y-z;2x-y-2z), \forall (x,y,z) \in \mathbb{R}^3$.
- 3. On note E l'ensemble des polynômes de degré 2 et $f: E \to \mathbb{R}$, définie par $f(P) = P(1), \forall P \in E$.
- 4. On note E l'ensemble des polynômes de degré 2 et $f: E \to \mathbb{R}^3$, définie par $f(P) = (P(0), P'(0), P''(0)), \forall P \in E$.

Exercice 5: Soit g la fonction de \mathbb{R}^2 dans \mathbb{R}^2 définie par $\forall (x,y) \in \mathbb{R}^2, g(x,y) = (2x-y,x-5y)$.

- 1. Déterminer le ou les antécédent(s) par g de (5, -4).
- 2. Montrer que $\forall (u, v) \in \mathbb{R}^2, \exists ! (x, y) \in \mathbb{R}^2, g(x, y) = (u, v).$
- 3. Que peut-on en déduire sur la fonction g?

Exercice 6 : Soit E un ensemble et $f: E \to E$ une application telle que $f \circ f = f$. Montrer que f est injective ou surjective si et seulement si $f = Id_E$.

Exercice 7 Montrer que la composée de deux injections est une injection et que la composée de deux surjections est une surjection.

Exercice 8 : Soient E, F deux ensembles et $f: E \to F$ et $g: F \to E$ deux applications. Montrer que si $g \circ f = Id_E$, alors g est surjective et f est injective.

1