Synthèse Intégration

Propriété : (admis) Toute fonction continue sur I admet une primitive sur I.

Définition :Soit f une fonction continue sur le segment [a;b] avec a et b deux réels. Soit F une primitive de f sur cet intervalle. On appelle intégrale de f de a à b le réel $\int_a^b f(t)dt = F(b) - F(a)$.

Propriété: Soit f une fonction dérivable sur I. Soit a et b deux réels appartenant à I. On a $f(b) - f(a) = \int_a^b f'(t)dt$.

Propriété: Soit f une fonction continue sur un intervalle I. Pour tout $a \in I$ la fonction F définie sur I par $F(x) = \int_a^x f(t)dt$ est l'unique primitive de f qui s'annule en a.

Propriété : (linéarité de l'intégrale) Soit f et g deux fonctions continues sur [a;b] et λ et μ deux réels. $\int_a^b \lambda f(t) + \mu g(t) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt$

Propriété: (relation de Chasles) Soit f une fonction continue sur un intervalle I et a, b, c trois réels de I. $\int_a^c f(t)dt = \int_a^b f(t)dt + \int_b^c f(t)dt$

Propriété: (positivité de l'intégrale) Soit f une fonction continue et positive sur [a;b] (avec a < b). $\int_a^b f(t)dt \ge 0$

Propriété :(croissance de l'intégrale) Soit f et g deux fonctions continues sur [a;b] (avec a < b) telles que $f(t) \le g(t) \forall t \in [a;b]$ alors $\int_a^b f(t) dt \le \int_a^b g(t) dt$

Propriété :Soit f une fonction continue sur [a;b] (avec a < b). $|\int_a^b f(t)dt| \le \int_a^b |f(t)| dt$

Propriété : (inégalité de la moyenne) Soit f une fonction continue et positive sur [a;b] (avec a < b). $min(f; [a;b]) \le \frac{1}{b-a} \int_a^b f(t) dt \le max(f; [a;b])$

Propriété: (Intégration par parties) Soient u et v deux fonctions de classe \mathcal{C}^1 sur un intervalle [a;b]. $\int_a^b u'(t)v(t)dt = [u(t)v(t)]_a^b - \int_a^b u(t)v'(t)dt$

Propriété: (Changement de variables) Soient I et J deux intervalles de \mathbb{R} , soit f une continue sur I et φ une fonction de classe \mathcal{C}^1 sur J telle que $\varphi(J) \subset I$. Alors, pour tout a, b dans J, $\int_a^b f(\varphi(t))\varphi'(t)dt = \int_{\varphi(a)}^{\varphi(b)} f(u)du$

Propriété: Si f est une fonction continue et paire sur \mathbb{R} alors pour tout $x \in \mathbb{R}$, $\int_{-x}^{x} f(t)dt = 2\int_{0}^{x} f(t)dt$

Si f est une fonction continue et impaire sur \mathbb{R} alors pour tout $x \in \mathbb{R}$, $\int_{-x}^{x} f(t)dt = 0$

Si f est une fonction continue sur $\mathbb R$ et périodique de période T alors pour tout $a \in \mathbb R$ $\int_a^{a+T} f(t)dt = \int_0^T f(t)dt$

Propriété: (admis) Soit f une fonction continue sur un intervalle I. Pour tout a et b dans I tels que a < b, l'intégrale $\int_a^b f(t)dt$ désigne l'aire algébrique du domaine délimité par C_f , l'axe des abscisses, les droites d'équations x = a et x = b.

Propriété: Soit f une fonction continue sur [a;b] (avec a < b).

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f(a+k\frac{b-a}{n}) = \int_{a}^{b} f(t)dt$$

Définition: Soit a < b deux réels. Soit f une fonction définie sur l'intervalle [a; b]. On dit que f est continue par morceaux sur [a; b] si f est continue en tout point de [a; b] sauf éventuellement en un nombre fini de points où f admet une limite finie à gauche et à droite et si f admet une limite finie à droite en a et à gauche en b.

Autrement dit f est continue sur [a;b] s'il existe des réels $x_0 < x_1 < ... < x_n$ tels que :

- $x_0 = a \text{ et } x_n = b.$
- Pour tout $k \in [0; n-1]$, f est continue sur $]x_k; x_{k+1}[$ et admet un prolongement par continuité sur $]x_k; x_{k+1}[$.

la famille $(x_0, x_1, ..., x_n)$ est appelée subdivision adaptée à f.

On note $\mathcal{C}_{\mathfrak{p}}([a;b])$ l'ensemble des fonctions continues par morceaux sur [a;b].

Définition: Soit a < b deux réels. Soit f une fonction définie sur l'intervalle [a; b]. On dit que f est une fonction en escalier si il existe des réels $x_0 < x_1 < ... < x_n$ tels que :

- $x_0 = a \text{ et } x_n = b.$
- Pour tout $k \in [|0; n-1|]$, f est constante sur $]x_k; x_{k+1}[$.

Définition: Soient a < b deux réels. Soient f une fonction continue par morceaux sur [a; b] et $(x_0, x_1, ..., x_n)$ une subdivision adaptée à f. Pour tout $k \in [|0; n-1|]$, on note f_k la fonction continue sur $[x_k; x_{k+1}]$ qui prolonge la restriction de f à $]x_k; x_{k+1}[$. alors l'intégrale de f de a à

$$b$$
 est le réel :
$$\int_a^b f(t)dt = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f_k(t)dt$$

Propriété: Soit f une fonction en escalier sur [a;b], $(x_0,x_1,...,x_n)$ une subdivision adaptée à f, $(\lambda_0,\lambda_1,...,\lambda_n) \in \mathbb{R}^{n+1}$ tels que pour $k \in [|0;n-1|]$ et $x \in]x_k; x_{k+1}[, f(x) = \lambda_k]$. Alors

$$\int_{a}^{b} f(t)dt = \sum_{k=0}^{n-1} \lambda_{k} (x_{k+1} - x_{k})$$