Synthèse Séries

Définition: Soit (u_n) une suite numérique. La série de terme général (u_n) est la suite (S_n) définie par $S_n = \sum_{k=0}^n u_k, \forall n \in \mathbb{N}$.

Pour $n \in \mathbb{N}$ fixé, S_n s'appelle la somme partielle de la série.

La série peut parfois être notée $\sum u_n$.

Définition: Soit $\sum u_n$ une série numérique. On dit que la série converge lorsque la suite (S_n) des sommes partielles convergent.

Dans ce cas, la limite $\lim_{n\to+\infty}\sum_{k=0}^n u_k$ est notée $\sum_{k=0}^{+\infty} u_k$ et est appelée la somme de la série.

Dans le cas contraire, on dit que la série diverge ou qu'elle est divergente.

Exemple : $\sum 1$, $\sum k$, $\sum \frac{1}{k+1} - \frac{1}{k}$, $\sum \ln(1 + \frac{1}{k})$, $\sum q^k$ (méthode des sommes télescopiques).

Propriété :Soit $(i,j) \in \mathbb{N}$ et soit $\sum u_n$ une série. Alors $\sum_{k \geq i} u_k$ et $\sum_{k \geq j} u_k$ sont de même nature.

Propriété :Soit $\sum u_n$ et $\sum v_n$ deux séries et λ .

- 1. Si les deux séries sont convergentes alors la série $\sum \lambda u_k + v_k$ converge et sa somme vaut $\lambda \sum_{k=0}^{+\infty} u_k + \sum_{k=0}^{+\infty} v_k$
- 2. Si une des séries converge et l'autre diverge, alors la série $\sum \lambda u_k + v_k$ diverge.

Propriété : Si une série converge, alors son terme général tend vers 0.

Définition: Soit $\sum u_n$ une série numérique convergente. Pour tout $n \in \mathbb{N}$, on appelle reste d'ordre n de la série la quantité $R_n = \sum_{k=n}^{+\infty} u_k$. (R_n) est la suite des reste de la série.

Propriété:

- 1. $S_n + R_n = S, \forall n \in \mathbb{N}$.
- 2. Si $\sum u_n$ est une série convergente alors la suite de ces restes tend vers 0.

Définition: Si (u_n) est une suite dont tous les termes sont positif (respectivement négatifs) alors $\sum u_n$ est appelée série à termes positifs (respectivement négatifs).

Propriété: Soit $\sum u_n$ une série à termes positifs et (S_n) la suite des sommes partielles de cette série.

- 1. (S_n) est une suite croissante.
- 2. La série $\sum u_n$ converge ssi la suite (S_n) est majorée.
- 3. Si la suite (S_n) n'est pas majorée, la série $\sum u_n$ diverge vers $+\infty$.

Propriété: (théorème de comparaison pour les séries à termes positifs).

Soient (u_n) et (v_n) deux suites positives à partir d'un certain rang et pour lesquelles il existe une entier N tel que $u_n \leq v_n \forall n \geq N$.

- 1. Si $\sum v_n$ converge, alors $\sum u_n$ converge.
- 2. Si $\sum u_n$ diverge alors $\sum v_n$ diverge.

Définition :Soit $\sum u_n$ une série. On dit que la série est absolument convergente ssi la série $\sum |u_n|$ est convergente.

Propriété : Si $\sum u_n$ converge absolument alors elle converge.

Propriété : la série harmonique diverge

Propriété : la série $\sum \frac{1}{n^2}$ converge.

Propriété : la série géométrique $\sum q^n$ est convergente ssi |q| < 1. Dans ce cas $\sum_{k=0}^{+\infty} q^n = \frac{1}{1-q}$.

Propriété : La série géométrique dérivée $\sum nq^{n-1}$ est convergente ssi $\mid q \mid < 1$.

Dans ce cas $\sum_{k=1}^{+\infty} kq^{k-1} = \frac{1}{(1-q)^2}$.

Propriété :La série géométrique dérivée deux fois $\sum n(n-1)q^{n-2}$ est convergente ssi $\mid q \mid < 1$.

Dans ce cas $\sum_{k=2}^{+\infty} k(k-1)q^{k-2} = \frac{2}{(1-q)^3}$.

Propriété: pour tout $x \in \mathbb{R}$ la série exponentielle $\sum \frac{x^n}{n!}$ converge et $\sum_{k=0}^{+\infty} \frac{x^n}{n!} = e^x$.